
CHAPTER 5
Further Applications of
Newton's Laws: Friction, Drag,
and Elasticity

5.1 Friction

• Discuss the general characteristics of friction.
• Describe the various types of friction.
• Calculate the magnitude of static and kinetic friction.

Figure 5.1 Total hip replacement surgery has become a common procedure. The head (or ball) of the patient’s femur
fits into a cup that has a hard plastic-like inner lining. (credit: National Institutes of Health, via Wikimedia Commons)
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INTRODUCTION: FURTHER APPLICATIONS OF NEWTON’S LAWS

5.2 Drag Forces

• Express mathematically the drag force.
• Discuss the applications of drag force.
• Define terminal velocity.
• Determine the terminal velocity given mass.

5.3 Elasticity: Stress and Strain

• State Hooke’s law.
• Explain Hooke’s law using graphical representation between deformation and applied force.
• Discuss the three types of deformations such as changes in length, sideways shear and changes in volume.
• Describe with examples the young’s modulus, shear modulus and bulk modulus.
• Determine the change in length given mass, length and radius.

Describe the forces on the hip joint. What means are
taken to ensure that this will be a good movable joint? From the photograph (for an adult) in Figure 5.1, estimate the dimensions
of the artificial device.

It is difficult to categorize forces into various types (aside from the four basic forces discussed in previous chapter). We know
that a net force affects the motion, position, and shape of an object. It is useful at this point to look at some particularly
interesting and common forces that will provide further applications of Newton’s laws of motion. We have in mind the forces of
friction, air or liquid drag, and deformation.

Click to view content (https://www.youtube.com/embed/kbZGcfF9UfA)

5.1 Friction
Friction is a force that is around us all the time that opposes relative motion between surfaces in contact but also allows us to
move (which you have discovered if you have ever tried to walk on ice). While a common force, the behavior of friction is actually
very complicated and is still not completely understood. We have to rely heavily on observations for whatever understandings we
can gain. However, we can still deal with its more elementary general characteristics and understand the circumstances in
which it behaves.

One of the simpler characteristics of friction is that it is parallel to the contact surface between surfaces and always in a direction
that opposes motion or attempted motion of the systems relative to each other. If two surfaces are in contact and moving
relative to one another, then the friction between them is called kinetic friction. For example, friction slows a hockey puck
sliding on ice. But when objects are stationary, static friction can act between them; the static friction is usually greater than the
kinetic friction between the surfaces.

Imagine, for example, trying to slide a heavy crate across a concrete floor—you may push harder and harder on the crate and not
move it at all. This means that the static friction responds to what you do—it increases to be equal to and in the opposite
direction of your push. But if you finally push hard enough, the crate seems to slip suddenly and starts to move. Once in motion
it is easier to keep it in motion than it was to get it started, indicating that the kinetic friction force is less than the static friction
force. If you add mass to the crate, say by placing a box on top of it, you need to push even harder to get it started and also to
keep it moving. Furthermore, if you oiled the concrete you would find it to be easier to get the crate started and keep it going (as

Friction
Friction is a force that opposes relative motion between surfaces in contact.

Kinetic Friction
If two surfaces are in contact and moving relative to one another, then the friction between them is called kinetic friction.
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you might expect).

Figure 5.2 is a crude pictorial representation of how friction occurs at the interface between two objects. Close-up inspection of
these surfaces shows them to be rough. So when you push to get an object moving (in this case, a crate), you must raise the
object until it can skip along with just the tips of the surface hitting, break off the points, or do both. A considerable force can be
resisted by friction with no apparent motion. The harder the surfaces are pushed together (such as if another box is placed on
the crate), the more force is needed to move them. Part of the friction is due to adhesive forces between the surface molecules of
the two objects, which explain the dependence of friction on the nature of the substances. Adhesion varies with substances in
contact and is a complicated aspect of surface physics. Once an object is moving, there are fewer points of contact (fewer
molecules adhering), so less force is required to keep the object moving. At small but nonzero speeds, friction is nearly
independent of speed.

Figure 5.2 Frictional forces, such as , always oppose motion or attempted motion between surfaces in contact. Friction arises in part

because of the roughness of the surfaces in contact, as seen in the expanded view. In order for the object to move, it must rise to where the

peaks can skip along the bottom surface. Thus a force is required just to set the object in motion. Some of the peaks will be broken off, also

requiring a force to maintain motion. Much of the friction is actually due to attractive forces between molecules making up the two objects,

so that even perfectly smooth surfaces are not friction-free. Such adhesive forces also depend on the substances the surfaces are made of,

explaining, for example, why rubber-soled shoes slip less than those with leather soles.

The magnitude of the frictional force has two forms: one for static situations (static friction), the other for when there is motion
(kinetic friction).

When there is no motion between the objects, the magnitude of static friction is

where is the coefficient of static friction and is the magnitude of the normal force (the force perpendicular to the surface).

The symbol means less than or equal to, implying that static friction can have a minimum and a maximum value of .
Static friction is a responsive force that increases to be equal and opposite to whatever force is exerted, up to its maximum limit.
Once the applied force exceeds , the object will move. Thus

Once an object is moving, the magnitude of kinetic friction is given by

where is the coefficient of kinetic friction. A system in which is described as a system in which friction behaves
simply.

5.1

Magnitude of Static Friction
Magnitude of static friction is

where is the coefficient of static friction and is the magnitude of the normal force.

5.2

5.3

5.4

5.1 • Friction 193



As seen in Table 5.1, the coefficients of kinetic friction are less than their static counterparts. That values of in Table 5.1 are
stated to only one or, at most, two digits is an indication of the approximate description of friction given by the above two
equations.

System Static friction Kinetic friction

Rubber on dry concrete 1.0 0.7

Rubber on wet concrete 0.7 0.5

Wood on wood 0.5 0.3

Waxed wood on wet snow 0.14 0.1

Metal on wood 0.5 0.3

Steel on steel (dry) 0.6 0.3

Steel on steel (oiled) 0.05 0.03

Teflon on steel 0.04 0.04

Bone lubricated by synovial fluid 0.016 0.015

Shoes on wood 0.9 0.7

Shoes on ice 0.1 0.05

Ice on ice 0.1 0.03

Steel on ice 0.04 0.02

Table 5.1 Coefficients of Static and Kinetic Friction

The equations given earlier include the dependence of friction on materials and the normal force. The direction of friction is
always opposite that of motion, parallel to the surface between objects, and perpendicular to the normal force. For example, if
the crate you try to push (with a force parallel to the floor) has a mass of 100 kg, then the normal force would be equal to its
weight, , perpendicular to the floor. If the coefficient of static friction is 0.45, you
would have to exert a force parallel to the floor greater than to move the crate. Once
there is motion, friction is less and the coefficient of kinetic friction might be 0.30, so that a force of only 290 N (

) would keep it moving at a constant speed. If the floor is lubricated, both coefficients
are considerably less than they would be without lubrication. Coefficient of friction is a unit less quantity with a magnitude
usually between 0 and 1.0. The coefficient of the friction depends on the two surfaces that are in contact.

Magnitude of Kinetic Friction
The magnitude of kinetic friction is given by

where is the coefficient of kinetic friction.

5.5
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Many people have experienced the slipperiness of walking on ice. However, many parts of the body, especially the joints, have
much smaller coefficients of friction—often three or four times less than ice. A joint is formed by the ends of two bones, which
are connected by thick tissues. The knee joint is formed by the lower leg bone (the tibia) and the thighbone (the femur). The hip is
a ball (at the end of the femur) and socket (part of the pelvis) joint. The ends of the bones in the joint are covered by cartilage,
which provides a smooth, almost glassy surface. The joints also produce a fluid (synovial fluid) that reduces friction and wear. A
damaged or arthritic joint can be replaced by an artificial joint (Figure 5.3). These replacements can be made of metals (stainless
steel or titanium) or plastic (polyethylene), also with very small coefficients of friction.

Figure 5.3 Artificial knee replacement is a procedure that has been performed for more than 20 years. In this figure, we see the post-op X-

rays of the right knee joint replacement. (credit: Mike Baird, Flickr)

Other natural lubricants include saliva produced in our mouths to aid in the swallowing process, and the slippery mucus found
between organs in the body, allowing them to move freely past each other during heartbeats, during breathing, and when a
person moves. Artificial lubricants are also common in hospitals and doctor’s clinics. For example, when ultrasonic imaging is
carried out, the gel that couples the transducer to the skin also serves to lubricate the surface between the transducer and the
skin—thereby reducing the coefficient of friction between the two surfaces. This allows the transducer to move freely over the
skin.

EXAMPLE 5.1

Skiing Exercise
A skier with a mass of 62 kg is sliding down a snowy slope. Find the coefficient of kinetic friction for the skier if friction is known
to be 45.0 N.

Take-Home Experiment
Find a small plastic object (such as a food container) and slide it on a kitchen table by giving it a gentle tap. Now spray water
on the table, simulating a light shower of rain. What happens now when you give the object the same-sized tap? Now add a
few drops of (vegetable or olive) oil on the surface of the water and give the same tap. What happens now? This latter
situation is particularly important for drivers to note, especially after a light rain shower. Why?
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Strategy

The magnitude of kinetic friction was given in to be 45.0 N. Kinetic friction is related to the normal force as ; thus,
the coefficient of kinetic friction can be found if we can find the normal force of the skier on a slope. The normal force is always
perpendicular to the surface, and since there is no motion perpendicular to the surface, the normal force should equal the
component of the skier’s weight perpendicular to the slope. (See the skier and free-body diagram in Figure 5.4.)

Figure 5.4 The motion of the skier and friction are parallel to the slope and so it is most convenient to project all forces onto a coordinate

system where one axis is parallel to the slope and the other is perpendicular (axes shown to left of skier). (the normal force) is

perpendicular to the slope, and (the friction) is parallel to the slope, but (the skier’s weight) has components along both axes, namely

and . is equal in magnitude to , so there is no motion perpendicular to the slope. However, is less than in magnitude, so

there is acceleration down the slope (along the x-axis).

That is,

Substituting this into our expression for kinetic friction, we get

which can now be solved for the coefficient of kinetic friction .

Solution

Solving for gives

Substituting known values on the right-hand side of the equation,

Discussion

This result is a little smaller than the coefficient listed in Table 5.1 for waxed wood on snow, but it is still reasonable since values
of the coefficients of friction can vary greatly. In situations like this, where an object of mass slides down a slope that makes
an angle with the horizontal, friction is given by . All objects will slide down a slope with constant
acceleration under these circumstances. Proof of this is left for this chapter’s Problems and Exercises.

5.6

5.7

5.8

5.9

Take-Home Experiment
An object will slide down an inclined plane at a constant velocity if the net force on the object is zero. We can use this fact to
measure the coefficient of kinetic friction between two objects. As shown in Example 5.1, the kinetic friction on a slope
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We have discussed that when an object rests on a horizontal surface, there is a normal force supporting it equal in magnitude to
its weight. Furthermore, simple friction is always proportional to the normal force.

Figure 5.5 illustrates one macroscopic characteristic of friction that is explained by microscopic (small-scale) research. We have
noted that friction is proportional to the normal force, but not to the area in contact, a somewhat counterintuitive notion. When
two rough surfaces are in contact, the actual contact area is a tiny fraction of the total area since only high spots touch. When a
greater normal force is exerted, the actual contact area increases, and it is found that the friction is proportional to this area.

Figure 5.5 Two rough surfaces in contact have a much smaller area of actual contact than their total area. When there is a greater normal

force as a result of a greater applied force, the area of actual contact increases as does friction.

But the atomic-scale view promises to explain far more than the simpler features of friction. The mechanism for how heat is
generated is now being determined. In other words, why do surfaces get warmer when rubbed? Essentially, atoms are linked
with one another to form lattices. When surfaces rub, the surface atoms adhere and cause atomic lattices to vibrate—essentially
creating sound waves that penetrate the material. The sound waves diminish with distance and their energy is converted into
heat. Chemical reactions that are related to frictional wear can also occur between atoms and molecules on the surfaces. Figure
5.6 shows how the tip of a probe drawn across another material is deformed by atomic-scale friction. The force needed to drag
the tip can be measured and is found to be related to shear stress, which will be discussed later in this chapter. The variation in
shear stress is remarkable (more than a factor of ) and difficult to predict theoretically, but shear stress is yielding a

. The component of the weight down the slope is equal to (see the free-body diagram in Figure
5.4). These forces act in opposite directions, so when they have equal magnitude, the acceleration is zero. Writing these out:

Solving for , we find that

Put a coin on a book and tilt it until the coin slides at a constant velocity down the book. You might need to tap the book
lightly to get the coin to move. Measure the angle of tilt relative to the horizontal and find . Note that the coin will not
start to slide at all until an angle greater than is attained, since the coefficient of static friction is larger than the
coefficient of kinetic friction. Discuss how this may affect the value for and its uncertainty.

5.10

5.11

5.12

Making Connections: Submicroscopic Explanations of Friction
The simpler aspects of friction dealt with so far are its macroscopic (large-scale) characteristics. Great strides have been
made in the atomic-scale explanation of friction during the past several decades. Researchers are finding that the atomic
nature of friction seems to have several fundamental characteristics. These characteristics not only explain some of the
simpler aspects of friction—they also hold the potential for the development of nearly friction-free environments that could
save hundreds of billions of dollars in energy which is currently being converted (unnecessarily) to heat.
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fundamental understanding of a large-scale phenomenon known since ancient times—friction.

Figure 5.6 The tip of a probe is deformed sideways by frictional force as the probe is dragged across a surface. Measurements of how the

force varies for different materials are yielding fundamental insights into the atomic nature of friction.

5.2 Drag Forces
Another interesting force in everyday life is the force of drag on an object when it is moving in a fluid (either a gas or a liquid).
You feel the drag force when you move your hand through water. You might also feel it if you move your hand during a strong
wind. The faster you move your hand, the harder it is to move. You feel a smaller drag force when you tilt your hand so only the
side goes through the air—you have decreased the area of your hand that faces the direction of motion. Like friction, the drag
force always opposes the motion of an object. Unlike simple friction, the drag force is proportional to some function of the
velocity of the object in that fluid. This functionality is complicated and depends upon the shape of the object, its size, its
velocity, and the fluid it is in. For most large objects such as bicyclists, cars, and baseballs not moving too slowly, the magnitude
of the drag force is found to be proportional to the square of the speed of the object. We can write this relationship
mathematically as . When taking into account other factors, this relationship becomes

where is the drag coefficient, is the area of the object facing the fluid, and is the density of the fluid. (Recall that density is
mass per unit volume.) This equation can also be written in a more generalized fashion as , where is a constant
equivalent to . We have set the exponent for these equations as 2 because, when an object is moving at high velocity
through air, the magnitude of the drag force is proportional to the square of the speed. As we shall see in a few pages on fluid
dynamics, for small particles moving at low speeds in a fluid, the exponent is equal to 1.

Forces and Motion
Explore the forces at work when you try to push a filing cabinet. Create an applied force and see the resulting friction force
and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. Draw a free-body
diagram of all the forces (including gravitational and normal forces). Click to open media in new browser.
(https://phet.colorado.edu/en/simulation/legacy/forces-and-motion)

5.13

Drag Force
Drag force is found to be proportional to the square of the speed of the object. Mathematically

5.14
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Athletes as well as car designers seek to reduce the drag force to lower their race times. (See Figure 5.7). “Aerodynamic” shaping
of an automobile can reduce the drag force and so increase a car’s gas mileage.

Figure 5.7 From racing cars to bobsled racers, aerodynamic shaping is crucial to achieving top speeds. Bobsleds are designed for speed.

They are shaped like a bullet with tapered fins. (credit: U.S. Army, via Wikimedia Commons)

The value of the drag coefficient, , is determined empirically, usually with the use of a wind tunnel. (See Figure 5.8).

Figure 5.8 NASA researchers test a model plane in a wind tunnel. (credit: NASA/Ames)

The drag coefficient can depend upon velocity, but we will assume that it is a constant here. Table 5.2 lists some typical drag
coefficients for a variety of objects. Notice that the drag coefficient is a dimensionless quantity. At highway speeds, over 50% of
the power of a car is used to overcome air drag. The most fuel-efficient cruising speed is about 70–80 km/h (about 45–50 mi/h).
For this reason, during the 1970s oil crisis in the United States, maximum speeds on highways were set at about 90 km/h (55 mi/
h).

where is the drag coefficient, is the area of the object facing the fluid, and is the density of the fluid.

5.15
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Typical values of drag
coefficient .

Object C

Airfoil 0.05

Toyota Camry 0.28

Ford Focus 0.32

Honda Civic 0.36

Ferrari Testarossa 0.37

Dodge Ram pickup 0.43

Sphere 0.45

Hummer H2 SUV 0.64

Skydiver (feet first) 0.70

Bicycle 0.90

Skydiver (horizontal) 1.0

Circular flat plate 1.12

Table 5.2 Drag Coefficient
Values

Substantial research is under way in the sporting world to minimize drag. The dimples on golf balls are being redesigned as are
the clothes that athletes wear. Bicycle racers and some swimmers and runners wear full bodysuits. Australian Cathy Freeman
wore a full body suit in the 2000 Sydney Olympics, and won the gold medal for the 400 m race. Many swimmers in the 2008
Beijing Olympics wore (Speedo) body suits; it might have made a difference in breaking many world records (See Figure 5.9).
Most elite swimmers (and cyclists) shave their body hair. Such innovations can have the effect of slicing away milliseconds in a
race, sometimes making the difference between a gold and a silver medal. One consequence is that careful and precise
guidelines must be continuously developed to maintain the integrity of the sport.
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Figure 5.9 Body suits, such as this LZR Racer Suit, have been credited with many world records after their release in 2008. Smoother “skin”

and more compression forces on a swimmer’s body provide at least 10% less drag. (credit: NASA/Kathy Barnstorff)

Some interesting situations connected to Newton’s second law occur when considering the effects of drag forces upon a moving
object. For instance, consider a skydiver falling through air under the influence of gravity. The two forces acting on him are the
force of gravity and the drag force (ignoring the buoyant force). The downward force of gravity remains constant regardless of
the velocity at which the person is moving. However, as the person’s velocity increases, the magnitude of the drag force increases
until the magnitude of the drag force is equal to the gravitational force, thus producing a net force of zero. A zero net force
means that there is no acceleration, as given by Newton’s second law. At this point, the person’s velocity remains constant and
we say that the person has reached his terminal velocity ( ). Since is proportional to the speed, a heavier skydiver must go
faster for to equal his weight. Let’s see how this works out more quantitatively.

At the terminal velocity,

Thus,

Using the equation for drag force, we have

Solving for the velocity, we obtain

Assume the density of air is . A 75-kg skydiver descending head first will have an area approximately
and a drag coefficient of approximately . We find that

This means a skydiver with a mass of 75 kg achieves a maximum terminal velocity of about 350 km/h while traveling in a
headfirst position, minimizing the area and his drag. In a spread-eagle position, that terminal velocity may decrease to about
200 km/h as the area increases. This terminal velocity becomes much smaller after the parachute opens.

5.16

5.17

5.18

5.19

5.20
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EXAMPLE 5.2

A Terminal Velocity
Find the terminal velocity of an 85-kg skydiver falling in a spread-eagle position.

Strategy

At terminal velocity, . Thus the drag force on the skydiver must equal the force of gravity (the person’s weight). Using
the equation of drag force, we find .

Thus the terminal velocity can be written as

Solution

All quantities are known except the person’s projected area. This is an adult (85 kg) falling spread eagle. We can estimate the
frontal area as

Using our equation for , we find that

Discussion

This result is consistent with the value for mentioned earlier. The 75-kg skydiver going feet first had a . He
weighed less but had a smaller frontal area and so a smaller drag due to the air.

The size of the object that is falling through air presents another interesting application of air drag. If you fall from a 5-m high
branch of a tree, you will likely get hurt—possibly fracturing a bone. However, a small squirrel does this all the time, without
getting hurt. You don’t reach a terminal velocity in such a short distance, but the squirrel does.

The following interesting quote on animal size and terminal velocity is from a 1928 essay by a British biologist, J.B.S. Haldane,
titled “On Being the Right Size.”

To the mouse and any smaller animal, [gravity] presents practically no dangers. You can drop a mouse down a thousand-yard
mine shaft; and, on arriving at the bottom, it gets a slight shock and walks away, provided that the ground is fairly soft. A rat is
killed, a man is broken, and a horse splashes. For the resistance presented to movement by the air is proportional to the surface
of the moving object. Divide an animal’s length, breadth, and height each by ten; its weight is reduced to a thousandth, but its
surface only to a hundredth. So the resistance to falling in the case of the small animal is relatively ten times greater than the
driving force.

Take-Home Experiment
This interesting activity examines the effect of weight upon terminal velocity. Gather together some nested coffee filters.
Leaving them in their original shape, measure the time it takes for one, two, three, four, and five nested filters to fall to the
floor from the same height (roughly 2 m). (Note that, due to the way the filters are nested, drag is constant and only mass
varies.) They obtain terminal velocity quite quickly, so find this velocity as a function of mass. Plot the terminal velocity
versus mass. Also plot versus mass. Which of these relationships is more linear? What can you conclude from these
graphs?

5.21

5.22

5.23
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The above quadratic dependence of air drag upon velocity does not hold if the object is very small, is going very slow, or is in a
denser medium than air. Then we find that the drag force is proportional just to the velocity. This relationship is given by Stokes’
law, which states that

where is the radius of the object, is the viscosity of the fluid, and is the object’s velocity.

Good examples of this law are provided by microorganisms, pollen, and dust particles. Because each of these objects is so small,
we find that many of these objects travel unaided only at a constant (terminal) velocity. Terminal velocities for bacteria (size
about ) can be about . To move at a greater speed, many bacteria swim using flagella (organelles shaped like little
tails) that are powered by little motors embedded in the cell. Sediment in a lake can move at a greater terminal velocity (about

), so it can take days to reach the bottom of the lake after being deposited on the surface.

If we compare animals living on land with those in water, you can see how drag has influenced evolution. Fishes, dolphins, and
even massive whales are streamlined in shape to reduce drag forces. Birds are streamlined and migratory species that fly large
distances often have particular features such as long necks. Flocks of birds fly in the shape of a spear head as the flock forms a
streamlined pattern (see Figure 5.10). In humans, one important example of streamlining is the shape of sperm, which need to
be efficient in their use of energy.

Figure 5.10 Geese fly in a V formation during their long migratory travels. This shape reduces drag and energy consumption for individual

birds, and also allows them a better way to communicate. (credit: Julo, Wikimedia Commons)

5.3 Elasticity: Stress and Strain
We now move from consideration of forces that affect the motion of an object (such as friction and drag) to those that affect an
object’s shape. If a bulldozer pushes a car into a wall, the car will not move but it will noticeably change shape. A change in shape
due to the application of a force is a deformation. Even very small forces are known to cause some deformation. For small
deformations, two important characteristics are observed. First, the object returns to its original shape when the force is

5.24

Stokes’ Law

where is the radius of the object, is the viscosity of the fluid, and is the object’s velocity.

5.25

Galileo’s Experiment
Galileo is said to have dropped two objects of different masses from the Tower of Pisa. He measured how long it took each to
reach the ground. Since stopwatches weren’t readily available, how do you think he measured their fall time? If the objects
were the same size, but with different masses, what do you think he should have observed? Would this result be different if
done on the Moon?
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removed—that is, the deformation is elastic for small deformations. Second, the size of the deformation is proportional to the
force—that is, for small deformations, Hooke’s law is obeyed. In equation form, Hooke’s law is given by

where is the amount of deformation (the change in length, for example) produced by the force , and is a proportionality
constant that depends on the shape and composition of the object and the direction of the force. Note that this force is a
function of the deformation —it is not constant as a kinetic friction force is. Rearranging this to

makes it clear that the deformation is proportional to the applied force. Figure 5.11 shows the Hooke’s law relationship between
the extension of a spring or of a human bone. For metals or springs, the straight line region in which Hooke’s law pertains is
much larger. Bones are brittle and the elastic region is small and the fracture abrupt. Eventually a large enough stress to the
material will cause it to break or fracture. Tensile strength is the breaking stress that will cause permanent deformation or
fracture of a material.

Figure 5.11 A graph of deformation versus applied force . The straight segment is the linear region where Hooke’s law is obeyed. The

slope of the straight region is . For larger forces, the graph is curved but the deformation is still elastic— will return to zero if the force

is removed. Still greater forces permanently deform the object until it finally fractures. The shape of the curve near fracture depends on

several factors, including how the force is applied. Note that in this graph the slope increases just before fracture, indicating that a small

increase in is producing a large increase in near the fracture.

The proportionality constant depends upon a number of factors for the material. For example, a guitar string made of nylon
stretches when it is tightened, and the elongation is proportional to the force applied (at least for small deformations).
Thicker nylon strings and ones made of steel stretch less for the same applied force, implying they have a larger (see Figure
5.12). Finally, all three strings return to their normal lengths when the force is removed, provided the deformation is small. Most
materials will behave in this manner if the deformation is less than about 0.1% or about 1 part in .

5.26

5.27

Hooke’s Law

where is the amount of deformation (the change in length, for example) produced by the force , and is a
proportionality constant that depends on the shape and composition of the object and the direction of the force.

5.28

5.29
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Figure 5.12 The same force, in this case a weight ( ), applied to three different guitar strings of identical length produces the three

different deformations shown as shaded segments. The string on the left is thin nylon, the one in the middle is thicker nylon, and the one on

the right is steel.

We now consider three specific types of deformations: changes in length (tension and compression), sideways shear (stress), and
changes in volume. All deformations are assumed to be small unless otherwise stated.

Changes in Length—Tension and Compression: Elastic Modulus
A change in length is produced when a force is applied to a wire or rod parallel to its length , either stretching it (a
tension) or compressing it. (See Figure 5.13.)

Figure 5.13 (a) Tension. The rod is stretched a length when a force is applied parallel to its length. (b) Compression. The same rod is

compressed by forces with the same magnitude in the opposite direction. For very small deformations and uniform materials, is

approximately the same for the same magnitude of tension or compression. For larger deformations, the cross-sectional area changes as

the rod is compressed or stretched.

Stretch Yourself a Little
How would you go about measuring the proportionality constant of a rubber band? If a rubber band stretched 3 cm when a
100-g mass was attached to it, then how much would it stretch if two similar rubber bands were attached to the same
mass—even if put together in parallel or alternatively if tied together in series?
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Experiments have shown that the change in length ( ) depends on only a few variables. As already noted, is proportional
to the force and depends on the substance from which the object is made. Additionally, the change in length is proportional to
the original length and inversely proportional to the cross-sectional area of the wire or rod. For example, a long guitar string
will stretch more than a short one, and a thick string will stretch less than a thin one. We can combine all these factors into one
equation for :

where is the change in length, the applied force, is a factor, called the elastic modulus or Young’s modulus, that depends
on the substance, is the cross-sectional area, and is the original length. Table 5.3 lists values of for several
materials—those with a large are said to have a large tensile stiffness because they deform less for a given tension or
compression.

Material
Young’s modulus (tension–compression)Y Shear modulus S Bulk modulus B

Aluminum 70 25 75

Bone – tension 16 80 8

Bone –
compression

9

Brass 90 35 75

Brick 15

Concrete 20

Glass 70 20 30

Granite 45 20 45

Hair (human) 10

Hardwood 15 10

Iron, cast 100 40 90

Lead 16 5 50

Marble 60 20 70

Nylon 5

Polystyrene 3

Silk 6

Spider thread 3

Table 5.3 Elastic Moduli1
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Material
Young’s modulus (tension–compression)Y Shear modulus S Bulk modulus B

Steel 210 80 130

Tendon 1

Acetone 0.7

Ethanol 0.9

Glycerin 4.5

Mercury 25

Water 2.2

Table 5.3 Elastic Moduli1

Young’s moduli are not listed for liquids and gases in Table 5.3 because they cannot be stretched or compressed in only one
direction. Note that there is an assumption that the object does not accelerate, so that there are actually two applied forces of
magnitude acting in opposite directions. For example, the strings in Figure 5.13 are being pulled down by a force of magnitude

and held up by the ceiling, which also exerts a force of magnitude .

EXAMPLE 5.3

The Stretch of a Long Cable
Suspension cables are used to carry gondolas at ski resorts. (See Figure 5.14) Consider a suspension cable that includes an
unsupported span of 3020 m. Calculate the amount of stretch in the steel cable. Assume that the cable has a diameter of 5.6 cm
and the maximum tension it can withstand is .

Figure 5.14 Gondolas travel along suspension cables at the Gala Yuzawa ski resort in Japan. (credit: Rudy Herman, Flickr)

Strategy

The force is equal to the maximum tension, or . The cross-sectional area is . The
equation can be used to find the change in length.

Solution

All quantities are known. Thus,

1Approximate and average values. Young’s moduli for tension and compression sometimes differ but are averaged here. Bone has significantly different

Young’s moduli for tension and compression.
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Discussion

This is quite a stretch, but only about 0.6% of the unsupported length. Effects of temperature upon length might be important in
these environments.

Bones, on the whole, do not fracture due to tension or compression. Rather they generally fracture due to sideways impact or
bending, resulting in the bone shearing or snapping. The behavior of bones under tension and compression is important
because it determines the load the bones can carry. Bones are classified as weight-bearing structures such as columns in
buildings and trees. Weight-bearing structures have special features; columns in building have steel-reinforcing rods while trees
and bones are fibrous. The bones in different parts of the body serve different structural functions and are prone to different
stresses. Thus the bone in the top of the femur is arranged in thin sheets separated by marrow while in other places the bones
can be cylindrical and filled with marrow or just solid. Overweight people have a tendency toward bone damage due to sustained
compressions in bone joints and tendons.

Another biological example of Hooke’s law occurs in tendons. Functionally, the tendon (the tissue connecting muscle to bone)
must stretch easily at first when a force is applied, but offer a much greater restoring force for a greater strain. Figure 5.15 shows
a stress-strain relationship for a human tendon. Some tendons have a high collagen content so there is relatively little strain, or
length change; others, like support tendons (as in the leg) can change length up to 10%. Note that this stress-strain curve is
nonlinear, since the slope of the line changes in different regions. In the first part of the stretch called the toe region, the fibers
in the tendon begin to align in the direction of the stress—this is called uncrimping. In the linear region, the fibrils will be
stretched, and in the failure region individual fibers begin to break. A simple model of this relationship can be illustrated by
springs in parallel: different springs are activated at different lengths of stretch. Examples of this are given in the problems at
end of this chapter. Ligaments (tissue connecting bone to bone) behave in a similar way.

Figure 5.15 Typical stress-strain curve for mammalian tendon. Three regions are shown: (1) toe region (2) linear region, and (3) failure

region.

Unlike bones and tendons, which need to be strong as well as elastic, the arteries and lungs need to be very stretchable. The
elastic properties of the arteries are essential for blood flow. The pressure in the arteries increases and arterial walls stretch
when the blood is pumped out of the heart. When the aortic valve shuts, the pressure in the arteries drops and the arterial walls
relax to maintain the blood flow. When you feel your pulse, you are feeling exactly this—the elastic behavior of the arteries as the
blood gushes through with each pump of the heart. If the arteries were rigid, you would not feel a pulse. The heart is also an
organ with special elastic properties. The lungs expand with muscular effort when we breathe in but relax freely and elastically
when we breathe out. Our skins are particularly elastic, especially for the young. A young person can go from 100 kg to 60 kg
with no visible sag in their skins. The elasticity of all organs reduces with age. Gradual physiological aging through reduction in
elasticity starts in the early 20s.
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EXAMPLE 5.4

Calculating Deformation: How Much Does Your Leg Shorten When You Stand on It?
Calculate the change in length of the upper leg bone (the femur) when a 70.0 kg man supports 62.0 kg of his mass on it,
assuming the bone to be equivalent to a uniform rod that is 40.0 cm long and 2.00 cm in radius.

Strategy

The force is equal to the weight supported, or

and the cross-sectional area is . The equation can be used to find the change in length.

Solution

All quantities except are known. Note that the compression value for Young’s modulus for bone must be used here. Thus,

Discussion

This small change in length seems reasonable, consistent with our experience that bones are rigid. In fact, even the rather large
forces encountered during strenuous physical activity do not compress or bend bones by large amounts. Although bone is rigid
compared with fat or muscle, several of the substances listed in Table 5.3 have larger values of Young’s modulus . In other
words, they are more rigid.

The equation for change in length is traditionally rearranged and written in the following form:

The ratio of force to area, , is defined as stress (measured in ), and the ratio of the change in length to length, , is

defined as strain (a unitless quantity). In other words,

In this form, the equation is analogous to Hooke’s law, with stress analogous to force and strain analogous to deformation. If we
again rearrange this equation to the form

we see that it is the same as Hooke’s law with a proportionality constant

This general idea—that force and the deformation it causes are proportional for small deformations—applies to changes in
length, sideways bending, and changes in volume.
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Stress
The ratio of force to area, , is defined as stress measured in N/m2.
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Sideways Stress: Shear Modulus
Figure 5.16 illustrates what is meant by a sideways stress or a shearing force. Here the deformation is called and it is
perpendicular to , rather than parallel as with tension and compression. Shear deformation behaves similarly to tension and
compression and can be described with similar equations. The expression for shear deformation is

where is the shear modulus (see Table 5.3) and is the force applied perpendicular to and parallel to the cross-sectional
area . Again, to keep the object from accelerating, there are actually two equal and opposite forces applied across opposite
faces, as illustrated in Figure 5.16. The equation is logical—for example, it is easier to bend a long thin pencil (small ) than a
short thick one, and both are more easily bent than similar steel rods (large ).

Figure 5.16 Shearing forces are applied perpendicular to the length and parallel to the area , producing a deformation . Vertical

forces are not shown, but it should be kept in mind that in addition to the two shearing forces, , there must be supporting forces to keep

the object from rotating. The distorting effects of these supporting forces are ignored in this treatment. The weight of the object also is not

shown, since it is usually negligible compared with forces large enough to cause significant deformations.

Examination of the shear moduli in Table 5.3 reveals some telling patterns. For example, shear moduli are less than Young’s
moduli for most materials. Bone is a remarkable exception. Its shear modulus is not only greater than its Young’s modulus, but
it is as large as that of steel. This is why bones are so rigid.

The spinal column (consisting of 26 vertebral segments separated by discs) provides the main support for the head and upper
part of the body. The spinal column has normal curvature for stability, but this curvature can be increased, leading to increased
shearing forces on the lower vertebrae. Discs are better at withstanding compressional forces than shear forces. Because the
spine is not vertical, the weight of the upper body exerts some of both. Pregnant women and people that are overweight (with
large abdomens) need to move their shoulders back to maintain balance, thereby increasing the curvature in their spine and so
increasing the shear component of the stress. An increased angle due to more curvature increases the shear forces along the
plane. These higher shear forces increase the risk of back injury through ruptured discs. The lumbosacral disc (the wedge shaped
disc below the last vertebrae) is particularly at risk because of its location.

The shear moduli for concrete and brick are very small; they are too highly variable to be listed. Concrete used in buildings can

Strain

The ratio of the change in length to length, , is defined as strain (a unitless quantity). In other words,
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Shear Deformation

where is the shear modulus and is the force applied perpendicular to and parallel to the cross-sectional area .
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withstand compression, as in pillars and arches, but is very poor against shear, as might be encountered in heavily loaded floors
or during earthquakes. Modern structures were made possible by the use of steel and steel-reinforced concrete. Almost by
definition, liquids and gases have shear moduli near zero, because they flow in response to shearing forces.

EXAMPLE 5.5

Calculating Force Required to Deform: That Nail Does Not Bend Much Under a Load
Find the mass of the picture hanging from a steel nail as shown in Figure 5.17, given that the nail bends only . (Assume
the shear modulus is known to two significant figures.)

Figure 5.17 Side view of a nail with a picture hung from it. The nail flexes very slightly (shown much larger than actual) because of the

shearing effect of the supported weight. Also shown is the upward force of the wall on the nail, illustrating that there are equal and opposite

forces applied across opposite cross sections of the nail. See Example 5.5 for a calculation of the mass of the picture.

Strategy

The force on the nail (neglecting the nail’s own weight) is the weight of the picture . If we can find , then the mass of the
picture is just . The equation can be solved for .

Solution

Solving the equation for , we see that all other quantities can be found:

S is found in Table 5.3 and is . The radius is 0.750 mm (as seen in the figure), so the cross-sectional area
is

The value for is also shown in the figure. Thus,

This 51 N force is the weight of the picture, so the picture’s mass is

Discussion

This is a fairly massive picture, and it is impressive that the nail flexes only —an amount undetectable to the unaided
eye.
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Changes in Volume: Bulk Modulus
An object will be compressed in all directions if inward forces are applied evenly on all its surfaces as in Figure 5.18. It is
relatively easy to compress gases and extremely difficult to compress liquids and solids. For example, air in a wine bottle is
compressed when it is corked. But if you try corking a brim-full bottle, you cannot compress the wine—some must be removed
if the cork is to be inserted. The reason for these different compressibilities is that atoms and molecules are separated by large
empty spaces in gases but packed close together in liquids and solids. To compress a gas, you must force its atoms and molecules
closer together. To compress liquids and solids, you must actually compress their atoms and molecules, and very strong
electromagnetic forces in them oppose this compression.

Figure 5.18 An inward force on all surfaces compresses this cube. Its change in volume is proportional to the force per unit area and its

original volume, and is related to the compressibility of the substance.

We can describe the compression or volume deformation of an object with an equation. First, we note that a force “applied
evenly” is defined to have the same stress, or ratio of force to area on all surfaces. The deformation produced is a change in
volume , which is found to behave very similarly to the shear, tension, and compression previously discussed. (This is not
surprising, since a compression of the entire object is equivalent to compressing each of its three dimensions.) The relationship
of the change in volume to other physical quantities is given by

where is the bulk modulus (see Table 5.3), is the original volume, and is the force per unit area applied uniformly inward
on all surfaces. Note that no bulk moduli are given for gases.

What are some examples of bulk compression of solids and liquids? One practical example is the manufacture of industrial-
grade diamonds by compressing carbon with an extremely large force per unit area. The carbon atoms rearrange their
crystalline structure into the more tightly packed pattern of diamonds. In nature, a similar process occurs deep underground,
where extremely large forces result from the weight of overlying material. Another natural source of large compressive forces is
the pressure created by the weight of water, especially in deep parts of the oceans. Water exerts an inward force on all surfaces of
a submerged object, and even on the water itself. At great depths, water is measurably compressed, as the following example
illustrates.

EXAMPLE 5.6

Calculating Change in Volume with Deformation: How Much Is Water Compressed at Great
Ocean Depths?
Calculate the fractional decrease in volume ( ) for seawater at 5.00 km depth, where the force per unit area is

.

Strategy

Equation is the correct physical relationship. All quantities in the equation except are known.
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Solution

Solving for the unknown gives

Substituting known values with the value for the bulk modulus from Table 5.3,

Discussion

Although measurable, this is not a significant decrease in volume considering that the force per unit area is about 500
atmospheres (1 million pounds per square foot). Liquids and solids are extraordinarily difficult to compress.

Conversely, very large forces are created by liquids and solids when they try to expand but are constrained from doing so—which
is equivalent to compressing them to less than their normal volume. This often occurs when a contained material warms up,
since most materials expand when their temperature increases. If the materials are tightly constrained, they deform or break
their container. Another very common example occurs when water freezes. Water, unlike most materials, expands when it
freezes, and it can easily fracture a boulder, rupture a biological cell, or crack an engine block that gets in its way.

Other types of deformations, such as torsion or twisting, behave analogously to the tension, shear, and bulk deformations
considered here.

PHET EXPLORATIONS

Masses & Springs

Click to view content (https://phet.colorado.edu/sims/mass-spring-lab/mass-spring-lab_en.html)
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GLOSSARY
deformation change in shape due to the application of

force
drag force , found to be proportional to the square of

the speed of the object; mathematically

where is the drag coefficient, is the area of the object
facing the fluid, and is the density of the fluid

friction a force that opposes relative motion or attempts at
motion between systems in contact

Hooke’s law proportional relationship between the force
on a material and the deformation it causes,

kinetic friction a force that opposes the motion of two
systems that are in contact and moving relative to one
another

magnitude of kinetic friction , where is the

coefficient of kinetic friction
magnitude of static friction , where is the

coefficient of static friction and is the magnitude of the
normal force

shear deformation deformation perpendicular to the
original length of an object

static friction a force that opposes the motion of two
systems that are in contact and are not moving relative to
one another

Stokes’ law , where is the radius of the
object, is the viscosity of the fluid, and is the object’s
velocity

strain ratio of change in length to original length
stress ratio of force to area
tensile strength the breaking stress that will cause

permanent deformation or fraction of a material

SECTION SUMMARY
5.1 Friction

• Friction is a contact force between systems that opposes
the motion or attempted motion between them. Simple
friction is proportional to the normal force pushing
the systems together. (A normal force is always
perpendicular to the contact surface between systems.)
Friction depends on both of the materials involved. The
magnitude of static friction between systems
stationary relative to one another is given by

where is the coefficient of static friction, which
depends on both of the materials.

• The kinetic friction force between systems moving
relative to one another is given by

where is the coefficient of kinetic friction, which
also depends on both materials.

5.2 Drag Forces
• Drag forces acting on an object moving in a fluid oppose

the motion. For larger objects (such as a baseball)
moving at a velocity in air, the drag force is given by

where is the drag coefficient (typical values are given
in Table 5.2), is the area of the object facing the fluid,
and is the fluid density.

• For small objects (such as a bacterium) moving in a
denser medium (such as water), the drag force is given
by Stokes’ law,

where is the radius of the object, is the fluid
viscosity, and is the object’s velocity.

5.3 Elasticity: Stress and Strain
• Hooke’s law is given by

where is the amount of deformation (the change in
length), is the applied force, and is a proportionality
constant that depends on the shape and composition of
the object and the direction of the force. The
relationship between the deformation and the applied
force can also be written as

where is Young’s modulus, which depends on the
substance, is the cross-sectional area, and is the
original length.

• The ratio of force to area, , is defined as stress,
measured in N/m2.

• The ratio of the change in length to length, , is

defined as strain (a unitless quantity). In other words,

• The expression for shear deformation is

where is the shear modulus and is the force applied
perpendicular to and parallel to the cross-sectional
area .

• The relationship of the change in volume to other
physical quantities is given by
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where is the bulk modulus, is the original volume,

and is the force per unit area applied uniformly
inward on all surfaces.

CONCEPTUAL QUESTIONS
5.1 Friction
1. Define normal force. What is its relationship to friction

when friction behaves simply?
2. The glue on a piece of tape can exert forces. Can these

forces be a type of simple friction? Explain, considering
especially that tape can stick to vertical walls and even to
ceilings.

3. When you learn to drive, you discover that you need to let
up slightly on the brake pedal as you come to a stop or the
car will stop with a jerk. Explain this in terms of the
relationship between static and kinetic friction.

4. When you push a piece of chalk across a chalkboard, it
sometimes screeches because it rapidly alternates
between slipping and sticking to the board. Describe this
process in more detail, in particular explaining how it is
related to the fact that kinetic friction is less than static
friction. (The same slip-grab process occurs when tires
screech on pavement.)

5.2 Drag Forces
5. Athletes such as swimmers and bicyclists wear body suits

in competition. Formulate a list of pros and cons of such
suits.

6. Two expressions were used for the drag force experienced
by a moving object in a liquid. One depended upon the
speed, while the other was proportional to the square of
the speed. In which types of motion would each of these
expressions be more applicable than the other one?

7. As cars travel, oil and gasoline leaks onto the road
surface. If a light rain falls, what does this do to the
control of the car? Does a heavy rain make any difference?

8. Why can a squirrel jump from a tree branch to the
ground and run away undamaged, while a human could
break a bone in such a fall?

5.3 Elasticity: Stress and Strain
9. The elastic properties of the arteries are essential for

blood flow. Explain the importance of this in terms of the
characteristics of the flow of blood (pulsating or
continuous).

10. What are you feeling when you feel your pulse? Measure
your pulse rate for 10 s and for 1 min. Is there a factor of
6 difference?

11. Examine different types of shoes, including sports shoes
and thongs. In terms of physics, why are the bottom
surfaces designed as they are? What differences will dry
and wet conditions make for these surfaces?

12. Would you expect your height to be different depending
upon the time of day? Why or why not?

13. Would you expect a large or small stress to be required to
deform a spider web? Why is this elasticity an important
feature for a spider web?

14. Explain why pregnant women often suffer from back
strain late in their pregnancy.

15. An old carpenter’s trick to keep nails from bending when
they are pounded into hard materials is to grip the
center of the nail firmly with pliers. Why does this help?

16. When a glass bottle full of vinegar warms up, both the
vinegar and the glass expand, but vinegar expands
significantly more with temperature than glass. The
bottle will break if it was filled to its tightly capped lid.
Explain why, and also explain how a pocket of air above
the vinegar would prevent the break. (This is the
function of the air above liquids in glass containers.)

PROBLEMS & EXERCISES
5.1 Friction
1. A physics major is cooking breakfast when he notices that

the frictional force between his steel spatula and his
Teflon frying pan is only 0.200 N. Knowing the coefficient
of kinetic friction between the two materials, he quickly
calculates the normal force. What is it?

2. (a) When rebuilding her car’s engine, a physics major
must exert 300 N of force to insert a dry steel piston into
a steel cylinder. What is the magnitude of the normal
force between the piston and cylinder? (b) What is the
magnitude of the force would she have to exert if the steel
parts were oiled?

3. (a) What is the maximum frictional force in the knee joint
of a person who supports 66.0 kg of her mass on that
knee? (b) During strenuous exercise it is possible to exert
forces to the joints that are easily ten times greater than
the weight being supported. What is the maximum force
of friction under such conditions? The frictional forces in
joints are relatively small in all circumstances except
when the joints deteriorate, such as from injury or
arthritis. Increased frictional forces can cause further
damage and pain.
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4. Suppose you have a 120-kg wooden crate resting on a
wood floor. (a) What maximum force can you exert
horizontally on the crate without moving it? (b) If you
continue to exert this force once the crate starts to slip,
what will the magnitude of its acceleration then be?

5. (a) If half of the weight of a small utility
truck is supported by its two drive wheels, what is the
magnitude of the maximum acceleration it can achieve
on dry concrete? (b) Will a metal cabinet lying on the
wooden bed of the truck slip if it accelerates at this rate?
(c) Solve both problems assuming the truck has four-
wheel drive.

6. A team of eight dogs pulls a sled with waxed wood
runners on wet snow (mush!). The dogs have average
masses of 19.0 kg, and the loaded sled with its rider has a
mass of 210 kg. (a) Calculate the magnitude of the
acceleration starting from rest if each dog exerts an
average force of 185 N backward on the snow. (b) What is
the magnitude of the acceleration once the sled starts to
move? (c) For both situations, calculate the magnitude of
the force in the coupling between the dogs and the sled.

7. Consider the 65.0-kg ice skater being pushed by two
others shown in Figure 5.19. (a) Find the direction and
magnitude of , the total force exerted on her by the
others, given that the magnitudes and are 26.4 N
and 18.6 N, respectively. (b) What is her initial
acceleration if she is initially stationary and wearing
steel-bladed skates that point in the direction of ? (c)
What is her acceleration assuming she is already moving
in the direction of ? (Remember that friction always
acts in the direction opposite that of motion or attempted
motion between surfaces in contact.)

Figure 5.19

8. Show that the acceleration of any object down a
frictionless incline that makes an angle with the
horizontal is . (Note that this acceleration is
independent of mass.)

9. Show that the acceleration of any object down an incline
where friction behaves simply (that is, where )
is Note that the acceleration
is independent of mass and reduces to the expression
found in the previous problem when friction becomes
negligibly small

10. Calculate the deceleration of a snow boarder going up a
, slope assuming the coefficient of friction for

waxed wood on wet snow. The result of Exercise 5.9 may
be useful, but be careful to consider the fact that the
snow boarder is going uphill. Explicitly show how you
follow the steps in Problem-Solving Strategies.

11. (a) Calculate the acceleration of a skier heading down a
slope, assuming the coefficient of friction for

waxed wood on wet snow. (b) Find the angle of the slope
down which this skier could coast at a constant velocity.
You can neglect air resistance in both parts, and you will
find the result of Exercise 5.9 to be useful. Explicitly
show how you follow the steps in the Problem-Solving
Strategies.

12. If an object is to rest on an incline without slipping, then
friction must equal the component of the weight of the
object parallel to the incline. This requires greater and
greater friction for steeper slopes. Show that the
maximum angle of an incline above the horizontal for
which an object will not slide down is .
You may use the result of the previous problem. Assume
that and that static friction has reached its
maximum value.

13. Calculate the maximum deceleration of a car that is
heading down a slope (one that makes an angle of
with the horizontal) under the following road
conditions. You may assume that the weight of the car is
evenly distributed on all four tires and that the
coefficient of static friction is involved—that is, the tires
are not allowed to slip during the deceleration. (Ignore
rolling.) Calculate for a car: (a) On dry concrete. (b) On
wet concrete. (c) On ice, assuming that , the
same as for shoes on ice.

14. Calculate the maximum acceleration of a car that is
heading up a slope (one that makes an angle of
with the horizontal) under the following road
conditions. Assume that only half the weight of the car is
supported by the two drive wheels and that the
coefficient of static friction is involved—that is, the tires
are not allowed to slip during the acceleration. (Ignore
rolling.) (a) On dry concrete. (b) On wet concrete. (c) On
ice, assuming that , the same as for shoes
on ice.

15. Repeat Exercise 5.14 for a car with four-wheel drive.
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16. A freight train consists of two engines
and 45 cars with average masses of . (a)
What force must each engine exert backward on the
track to accelerate the train at a rate of

if the force of friction is
, assuming the engines exert identical

forces? This is not a large frictional force for such a
massive system. Rolling friction for trains is small, and
consequently trains are very energy-efficient
transportation systems. (b) What is the magnitude of
the force in the coupling between the 37th and 38th cars
(this is the force each exerts on the other), assuming all
cars have the same mass and that friction is evenly
distributed among all of the cars and engines?

17. Consider the 52.0-kg mountain climber in Figure 5.20.
(a) Find the tension in the rope and the force that the
mountain climber must exert with her feet on the
vertical rock face to remain stationary. Assume that the
force is exerted parallel to her legs. Also, assume
negligible force exerted by her arms. (b) What is the
minimum coefficient of friction between her shoes and
the cliff?

Figure 5.20 Part of the climber’s weight is supported by her

rope and part by friction between her feet and the rock face.

18. A contestant in a winter sporting event pushes a 45.0-kg
block of ice across a frozen lake as shown in Figure
5.21(a). (a) Calculate the minimum force he must exert
to get the block moving. (b) What is the magnitude of its
acceleration once it starts to move, if that force is
maintained?

19. Repeat Exercise 5.18 with the contestant pulling the
block of ice with a rope over his shoulder at the same
angle above the horizontal as shown in Figure 5.21(b).

Figure 5.21 Which method of sliding a block of ice requires

less force—(a) pushing or (b) pulling at the same angle above

the horizontal?

5.2 Drag Forces
20. The terminal velocity of a person falling in air depends

upon the weight and the area of the person facing the
fluid. Find the terminal velocity (in meters per second
and kilometers per hour) of an 80.0-kg skydiver falling
in a headfirst position with a surface area of .

21. A 60-kg and a 90-kg skydiver jump from an airplane at
an altitude of 6000 m, both falling in a headfirst
position. Make some assumption on their frontal areas
and calculate their terminal velocities. How long will it
take for each skydiver to reach the ground (assuming the
time to reach terminal velocity is small)? Assume all
values are accurate to three significant digits.

22. A 560-g squirrel with a surface area of falls
from a 5.0-m tree to the ground. Estimate its terminal
velocity. (Use a drag coefficient for a horizontal
skydiver.) What will be the velocity of a 56-kg person
hitting the ground, assuming no drag contribution in
such a short distance?

23. To maintain a constant speed, the force provided by a
car’s engine must equal the drag force plus the force of
friction of the road (the rolling resistance). (a) What are
the magnitudes of drag forces at 70 km/h and 100 km/h
for a Toyota Camry? (Drag area is ) (b) What is
the magnitude of drag force at 70 km/h and 100 km/h
for a Hummer H2? (Drag area is ) Assume all
values are accurate to three significant digits.
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24. By what factor does the drag force on a car increase as it
goes from 65 to 110 km/h?

25. Calculate the speed a spherical rain drop would achieve
falling from 5.00 km (a) in the absence of air drag (b)
with air drag. Take the size across of the drop to be 4
mm, the density to be , and the
surface area to be .

26. Using Stokes’ law, verify that the units for viscosity are
kilograms per meter per second.

27. Find the terminal velocity of a spherical bacterium
(diameter ) falling in water. You will first need
to note that the drag force is equal to the weight at
terminal velocity. Take the density of the bacterium to
be .

28. Stokes’ law describes sedimentation of particles in
liquids and can be used to measure viscosity. Particles in
liquids achieve terminal velocity quickly. One can
measure the time it takes for a particle to fall a certain
distance and then use Stokes’ law to calculate the
viscosity of the liquid. Suppose a steel ball bearing
(density , diameter ) is
dropped in a container of motor oil. It takes 12 s to fall a
distance of 0.60 m. Calculate the viscosity of the oil.

5.3 Elasticity: Stress and Strain
29. During a circus act, one performer swings upside down

hanging from a trapeze holding another, also upside-
down, performer by the legs. If the upward force on the
lower performer is three times her weight, how much
do the bones (the femurs) in her upper legs stretch? You
may assume each is equivalent to a uniform rod 35.0 cm
long and 1.80 cm in radius. Her mass is 60.0 kg.

30. During a wrestling match, a 150 kg wrestler briefly
stands on one hand during a maneuver designed to
perplex his already moribund adversary. By how much
does the upper arm bone shorten in length? The bone
can be represented by a uniform rod 38.0 cm in length
and 2.10 cm in radius.

31. (a) The “lead” in pencils is a graphite composition with a
Young’s modulus of about . Calculate
the change in length of the lead in an automatic pencil if
you tap it straight into the pencil with a force of 4.0 N.
The lead is 0.50 mm in diameter and 60 mm long. (b) Is
the answer reasonable? That is, does it seem to be
consistent with what you have observed when using
pencils?

32. TV broadcast antennas are the tallest artificial
structures on Earth. In 1987, a 72.0-kg physicist placed
himself and 400 kg of equipment at the top of one
610-m high antenna to perform gravity experiments. By
how much was the antenna compressed, if we consider
it to be equivalent to a steel cylinder 0.150 m in radius?

33. (a) By how much does a 65.0-kg mountain climber
stretch her 0.800-cm diameter nylon rope when she
hangs 35.0 m below a rock outcropping? (b) Does the
answer seem to be consistent with what you have
observed for nylon ropes? Would it make sense if the
rope were actually a bungee cord?

34. A 20.0-m tall hollow aluminum flagpole is equivalent in
stiffness to a solid cylinder 4.00 cm in diameter. A
strong wind bends the pole much as a horizontal force
of 900 N exerted at the top would. How far to the side
does the top of the pole flex?

35. As an oil well is drilled, each new section of drill pipe
supports its own weight and that of the pipe and drill bit
beneath it. Calculate the stretch in a new 6.00 m length
of steel pipe that supports 3.00 km of pipe having a
mass of 20.0 kg/m and a 100-kg drill bit. The pipe is
equivalent in stiffness to a solid cylinder 5.00 cm in
diameter.

36. Calculate the force a piano tuner applies to stretch a
steel piano wire 8.00 mm, if the wire is originally 0.850
mm in diameter and 1.35 m long.

37. A vertebra is subjected to a shearing force of 500 N. Find
the shear deformation, taking the vertebra to be a
cylinder 3.00 cm high and 4.00 cm in diameter.

38. A disk between vertebrae in the spine is subjected to a
shearing force of 600 N. Find its shear deformation,
taking it to have the shear modulus of .
The disk is equivalent to a solid cylinder 0.700 cm high
and 4.00 cm in diameter.

39. When using a pencil eraser, you exert a vertical force of
6.00 N at a distance of 2.00 cm from the hardwood-
eraser joint. The pencil is 6.00 mm in diameter and is
held at an angle of to the horizontal. (a) By how
much does the wood flex perpendicular to its length? (b)
How much is it compressed lengthwise?

40. To consider the effect of wires hung on poles, we take
data from Example 4.8, in which tensions in wires
supporting a traffic light were calculated. The left wire
made an angle below the horizontal with the top
of its pole and carried a tension of 108 N. The 12.0 m tall
hollow aluminum pole is equivalent in stiffness to a 4.50
cm diameter solid cylinder. (a) How far is it bent to the
side? (b) By how much is it compressed?

41. A farmer making grape juice fills a glass bottle to the
brim and caps it tightly. The juice expands more than the
glass when it warms up, in such a way that the volume
increases by 0.2% (that is, ) relative
to the space available. Calculate the magnitude of the
normal force exerted by the juice per square centimeter
if its bulk modulus is , assuming the
bottle does not break. In view of your answer, do you
think the bottle will survive?
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42. (a) When water freezes, its volume increases by 9.05%
(that is, ). What force per unit
area is water capable of exerting on a container when it
freezes? (It is acceptable to use the bulk modulus of
water in this problem.) (b) Is it surprising that such
forces can fracture engine blocks, boulders, and the like?

43. This problem returns to the tightrope walker studied in
Example 4.6, who created a tension of in
a wire making an angle below the horizontal with
each supporting pole. Calculate how much this tension
stretches the steel wire if it was originally 15 m long and
0.50 cm in diameter.

44. The pole in Figure 5.22 is at a bend in a power line
and is therefore subjected to more shear force than
poles in straight parts of the line. The tension in each
line is , at the angles shown. The pole is
15.0 m tall, has an 18.0 cm diameter, and can be
considered to have half the stiffness of hardwood. (a)
Calculate the compression of the pole. (b) Find how
much it bends and in what direction. (c) Find the
tension in a guy wire used to keep the pole straight if it
is attached to the top of the pole at an angle of
with the vertical. (Clearly, the guy wire must be in the
opposite direction of the bend.)

Figure 5.22 This telephone pole is at a bend in a power

line. A guy wire is attached to the top of the pole at an angle

of with the vertical.

Chapter 5 • Problems & Exercises 219



220 Chapter 5 • Problems & Exercises

Access for free at openstax.org.




